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ABSTRACT: In this paper there is introduced an algorithm for extracting two kinds of rule

sets directly from numerical data set based on rough set theory. This algorithm stands for

recursive process in which remaining set of objects belonging to a particular class is either

approximated if in that set there are some objects belonging to another class or not. In the

first case a rule is defined by the lower approximation of that set otherwise a rule is defined

by the crisp set. This way a minimal rule set is extracted from the whole set of objects. For

characteristic rule set only rules with higher strength than specified one are extracted. The

algorithm performance was verified on the Iris data set. This algorithm is suitable for solving

classification tasks.
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1. Introduction

Solving classification tasks occurs in wide range of human activity such as decision

making processes, diagnosis etc. Various means can be used but one have to take into account

their pros and cons for the concrete real-life problem to be solved. One of suitable means is

rough set theory (RST), which can be used even under condition of imprecise and uncertain

data.

The original rough set philosophy was founded on the assumption that objects

characterized by the same values of attributes are indiscernible and therefore the whole set of

objects can be divided into elementary sets. This division is either exact if a particular

elementary set contains only objects assigned to the same class (crisp set) or approximate

otherwise (rough set). Any rough set can be replaced by a pair of crisp sets, called lower and

upper approximation. The lower approximation consists of all objects which surely belong to

the set and the upper approximation contains objects which possibly belong to the set. A

difference between upper and lower approximation is called boundary region and for rough set

this region is not empty. An exact rule can be defined for each lower approximation and an

approximate rule for upper approximation. Each rule can be characterized by strength, defined

as the number of objects covered by this rule [2, 4, 5, 7].

However the original concept of this theory is not suitable in the cases when there is a

relatively large set of objects because of imprecise measurements, random fluctuation of

attribute values etc. This fact results in huge number of rules [4, 5]. Therefore a new approach

was introduced into RST which is based on similarity and reflexivity relation to define rough

approximation of sets of objects with similar or the same attribute values. For example the

goal of the algorithm called Minimal description-heuristic is to found out a minimal set of

cuts on attribute value intervals. By these cuts the whole set of objects is divided into minimal

number of elementary sets. Finally a rule can be defined for each elementary set [4]. In

another algorithm tolerance intervals are determined for attribute values. From these tolerance

intervals rough approximations of sets of objects with similar or the same attribute values are



created. In addition three kinds of exact rule sets can be induced – a minimal, an exhaustive

and a characteristic rule set [5].

In this article there is described an algorithm for extracting two kinds of exact rule sets

from numerical data set – a minimal rule set with minimal number of rules and a characteristic

rule set with only such rules of which the strength is higher than that one specified by user.

Following section of this article is devoted to the description of this algorithm. Then in

section 3 the classification ability of the algorithm is verified on the Iris data set. Pros and

cons of using this algorithm are sumarized in section 4.

2. The algorithm description

The idea of creating this algorithm came from [1] where fuzzy classifier with activation

and inhibition hyperboxes is described. An algorithm of that classifier is able to generate those

hyperboxes, create membership functions for them and tune their parameters. A set of fuzzy

rules is the final product. But in this approach a rule set can be generated in a simplier way.

Partitioning set of objects is discussed first. Let´s have at disposal a numerical data set X

in which objects are represented by examples. Each example is described by m-dimensional

vector of attribute values x = {x1, x1, …, xm} and assigned to one of n classes. Let Xi be a set

of examples assigned to class i and let Ai(1) be the m-dimensional subspace of level 1

determined by minimal and maximal attribute values of Xi.

Ai(1) = {x | vik(1) ≤ xk ≤ Vik(1), k = 1, ..., m} (1)

where: xk = kth element of vector x (k = 1, ..., m),

vik(1) = minimal value of xk of x ∈ Xi,

Vik(1) = maximal value of xk of x ∈ Xi.

If in this subspace there is not any example assigned to class j (j ≠ i, j = 1, ..., n), then the

set Xi is the crisp set and a rule of level 1 for class i is defined as follows:

if x is in Ai(1) then x belongs to class i (2)

If in the subspace Ai(1) there is an example assigned to class j (j ≠ i, j = 1, ..., n), then the

set Xi has to be approximated. The defined subspace Ai(1) is then equal to the upper

approximation of Xi marked Ai
*
(1) and a boundary region has to be determined. This boundary

region is denoted Bnij(1):

Bnij(1) = {x | uijk(1) ≤ xk ≤ Uijk(1), k = 1, ..., m} (3)

where vik(1) ≤ uijk(1) ≤ Uijk(1) ≤ Vik(1). Minimal and maximal attribute values of boundary

region are determined as follows:

1. For vjk(1) ≤ vik(1) ≤ Vjk(1) < Vik(1)

uijk(1) = vik(1) (4)

Uijk(1) = Vjk(1) + α[Vik(1) – Vjk(1)]

2. For vik(1) < vjk(1) ≤ Vik(1) < Vjk(1)

uijk(1) = vjk(1) – α[vjk(1) – vik(1)] (5)

Uijk(1) = Vik(1)

3. For vjk(1) ≤ vik(1) ≤ Vik(1) < Vjk(1)

uijk(1) = vik(1) (6)

Uijk(1) = Vik(1)

4. For vik(1) < vjk(1) ≤ Vjk(1) < Vik(1)

uijk(1) = vjk(1) – α[vjk(1) – vik(1)] (7)

Uijk(1) = Vjk(1) + α[Vik(1) – Vjk(1)]



where α (0 < α < 1) is an user specified parameter for determining the size of Bnij(1).

For rough approximation is then a rule of level 1 defined in form:

if x is in Ai
*
(1) and x is not in Bnij(1) then x belongs to class i (8)

i.e. an example x is in a lower approximation of Xi.

If (6) holds for all k (k = 1, ..., m), then Ai
*
(1) is equal to Bnij(1). In this case no rule is

defined, since no x can be in lower approximation.

If some examples belonging to Xi exist in Bnij(1) then the m-dimensional subspace of

level 2 denoted Ai(2) is determined from those examples. The same procedure is performed

until a boundary region of certain level l is empty or any rule can be generated.

Now the structure of the algorithm written in the form of pseudocode follows:

begin

for i:=1 to n do

begin specify set of objects Xi for class i;

for j:=1 to n do

begin if j≠i then do

begin specify set of objects Xj for class j;

Xi’:= Xi; level:=0;

while Xi’ is not empty

begin level:=level+1;

determine Ai(level) and Aj(level);

if Ai(level) covers no example from Xj then define rule (1);

if Ai(level) covers any example from Xj then do

begin determine Ai
*
( level) and Bnij(level);

     if no rule can be generated then break;

     else define rule (2);

 end

remove covered examples by rule (1) or (2) from Xi;

end

end

end

for r:=1 to number_of_generated_rules do

begin count correctly and incorrectly classified examples by rule r;

while Xi is not empty do

begin select an exact rule with highest strength;

remove examples covered by this rule;

if there is no exact rule then do

begin select an approximate rule with the smallest number of

misclassified examples;

determine a class j (j ≠ i, j = 1, ..., n) of incorrectly classified

examples; determine level;

increase corresponding boundary region Bnij(level) until that rule

becomes an exact one;

if no rule can become an exact one then break;

end

end

end

end

end



The structure of the algorithm can be divided into two parts. In the first part all rules are

generated by the process of partitioning set X into Xi and Xj (j ≠ i, j = 1, ..., n). Then in the

second part exact rules are selected to insert them into rule set. If there is no exact rule for

remaining set of examples Xi, then boundary regions corresponding to approximate rules have

to be increased in order to these rules become exact ones.

If a characteristic rule set was requested to extract, then the algorithm does not extract

rules with smallest strength than that one specified by user.

3. Verifying the classification ability of presented algorithm

To verify the classification ability of the presented algorithm an experiment was carried

out on one of the most used data set Iris [6]. The characteristics of this data set are: 150

objects, 4 attributes a 3 classes.

To fulfil the requirement for creating of learning and testing sets, the cross validation

method was used [3]. The whole data set was split into ten subsets and ten experiments were

carried out in which 9 of 10 subsets were used as learning set a remaining subset for testing

set (10 fold CV).

In table 1 there are results for different values of parameters α. In the second and third

column there are average numbers of correctly classified objects and adequate values in

percents for learning and testing set respectively. Average numbers of misclassified objects

for the testing sets are in the fourth column. Average numbers of not classified objects for the

testing sets are in the fifth column. In the sixth column there are average numbers of extracted

rules and in the last column there are average values of time in seconds.

Value of

parameter

α

Learning

set

Testing

set

Number of

misclassified

objects

Number of not

classified

objects

Number

of rules

Time

[sec]

0,1 134,2

(99,41%)

12,8

(85,33%)

0,9 1,3 8,1 0,2

0,3 130,3

(96,52%)

12,9

(86,0%)

0,4 1,7 7,1 0,2

0,5 134,3

(99,48%)

12,3

(82,0%)

0,6 2,2 9,6 0,24

0,7 135

(100%)

11,9

(79,33%)

0,4 2,8 11,8 0,24

0,9 135

(100%)

10,7

(71,33%)

0,7 3,6 16 0,32

Table 1 – Results for 10 fold CV and different values of parameter α

The results from the table for increasing the value of parameter α can be generalized:

• the number of extracted rules increasing. This is due to increasing boundary regions at

the expense of lower approximation of each set.

• the classification accuracy on testing set decreasing because rules cover less m-

dimensional space by lower approximations.

• time is increasing too.

Algorithm programming and evaluating its properties was realized in MATLAB version 6.0

on the computer with processor INTEL Pentium II and with RAM capacity of 64MB. Results

may be compared with those in [5].



4. Sumarization of algorithm properties

Here are sumarized advantages and disadvantages of using this algorithm for solving

classification tasks. The advantages are:

• Extracted rules are only exact not approximate. This is due to generation them from

lower approximations and crisp sets. If there are no identical examples assigned to

different classes, a recognition rate of 100% for learning set can be obtained.

Misclassification can be easily analyzed by rules.

• Possibility to generate a minimal or a characteristic set of rules.

• Generalization ability can be modified by choosing a suitable value of parameter α. If

a test example is out of all created lower approximations or crisp sets in the learning

phase, then that example is marked as not classified (but not as misclassified).

• Rule extraction is very fast. Creating lower approximations depends on determining

upper approximations and boundary regions. Rules can be obtained from much larger

data set in relatively short time.

• The algorithm is simple, comprehensible and easy to programme it.

• The algorithm may be used on data set with continuous and discrete data.

Possible disadvantage is that the generalization ability may be lower in the cases when the

characteristics of the learning and testing set are very different.

5. Conclusion

In this paper there is introduced the algorithm for extracting two kinds of rule sets directly

from numerical data set based on rough set theory. Rules are defined for lower

approximations of sets of objects and crisp sets of objects. The final rule set may be either a

minimal or a characteristic one as requested by user. In some applications this algorithm may

be more suitable than e.g. neural networks because of its numerous advantages. The described

algorithm is simple, comprehensible and easy to programme it. Its implementation works

relatively fast and can be applied for solving any classification task.
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