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Abstract

One of interesting problems in genetic algorithms (GAs) is the population sizing problem. If you

take a population too small, the �nal solution (represented by the quality of the whole population)

is suboptimal and therefore the wrong one. On the other hand, if you take the population too

large, you must reach the right target but you lose a computing time on processing redundant

individuals. In order to estimate the correct size of population, approximations of population

sizing are used. They consider an approximated function, a representation of individuals and
the character of used operators. Computing environment of Matlab allows us, with help of the

estimation model, to identify the right population size, to estimate the �nal overall quality of

individuals and to compare theoretical results with real runs of GAs.

1 Introduction

The genetic algorithms are stochastic based algorithms which are inuenced by various param-
eters. The most important ones seem to be the size of population, the crossover scheme, the
probabilities of crossover and mutation, the selection scheme and the replacement strategies.
Some models of simple genetic algorithm (also SGA) have been created [4] however, they still
do not give all answers to all questions we are facing in the area of GAs.

As it seems natural that the description of GA1 run is quite simple, the mathematical de-
scriptions may lack in many views. The truth is that the number of models increases using
the theories of statistics and probability. In the article, we follow the estimation theories of the
expected quality based on a population size. We choose the most mature one, which employs
a well-know problem|one dimensional random walk (sometimes called gamler's ruin problem).
We clear up the basics and carry out some appealing experiments.

The article is organized into several sections. Introduction is the �rst one. Second one,
Backgroud reviews the published theory on population sizing and concentrates on the estimation
based on one dimensional random walk. Third section (Domains of interest) explains tasks we
tackle. In Experiments, results of experiments are shown mainly through �gures and a table. The
Discussion section explains, clari�es the results and kicks o� points for further work. Conclusion,
the last one, summarizes the results.

2 Background

This section is a review of the most important work on population sizing and its relation to the
convergence quality of GAs. We deal with fundamental milestones in several subsections. In
Decomposition, key �ndings about GAs are presented, which have become the "golden" rules in
the area of GAs over the years. In De Jong's estimate, a �rst population sizing equation is stated
and the linkage with 2k(two)-arm bandit problem is mentioned. The next section-Conservative
estimate presents a �rst full-grown model. In the last section, the newest model is presented
and fully described.

2.1 Decomposition

In GAs, chromosomes, often represented as binary vectors, encode the solution. Combination
of bits (schemata) acts as a unit to inuence the �tness of an individual is known as building

1In the article, we employ the term "GA" instead of "PGA of one population". PGA of one population belongs
to the main scopes of our study. As it appeared in [10], those two types of GAs could be easily transformed between
each other.



blocks (BBs). In [5], it was �rstly presented a sort of decomposition of GA based upon BBs.
The highlights are reviewed:

� The GA is processing BBs.

� Ensure the growth of necessary.

� Supply enough BBs in the initial population.

� Mix the BBs properly.

� Solve problems that are BBs tractable.

� Decide well among competing BBs.

Those were pointed out as the basics on the BB theory. We do not inquire them again,
because it could be found elsewhere [5,6,8].

2.2 De Jong's estimate

Holland [1,2] idealized the process in a GA as a cluster of parallel and interconnected 2k-armed
bandit problems. The Holland's bandit problem was extended by De Jong [3] in the equation
for population sizing as
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where n is the size of population, �2
1 and �22 are the variance values of the two arm payo�s

respectively,f1 and f2 are the mean �tness values. It is representing the basic noise-to-signal
equation.

Although it was not extended in the De Jong's dissertation, it gave a �rst approximation on
the population sizing problem.

2.3 Conservative estimate

In [5], the statistical decision theory was employed. They have been modelling a GA run as
competitions between the best and the second best BBs. Those two BBs were represented with
their mean �tnesses and �tness variances. One of the outputs was that the probability of the
right choice in a single trail in a problem (with m equally sized partitions) is

p = �(
dp

2m0�bb
) (2)

where � is the cumulative distribution function (CDF), �bb is the average BB variance, m0

is a number of competing partitions (m� 1) and d is the �tness di�erence between the best and
the second best BBs. The equation below gives the population sizing estimate as

N = 2c(�)m0(1 + �2t )�
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where n is the population size, c(�) is the probability of a good solution, m0 is a number
of competing partitions, �2t represents additive noise

2, �2M is the average �tness variance of the
partition being considered, d2 represents second power of the �tness di�erence between the best
and the second best BBs and �k could be substituted as 2k, because normally every bit in a
string could contain just two values 0; 1. The variable k equals 1 when the number of partitions
equals the length of a string.

The approximation (3) stated above gives even a softer solution to De Jong's one on popu-
lation sizing.

2Without noise the term (1 + �2t ) is omitted.



2.4 The Gambler's ruin problem

In [8], they used a well known one-dimensional random walk with absorbing bariers x = 0 and
x = n representing convergence to the wrong and the right solution, respectively. Probabilities
p and 1 � p are representing probabilities that the best BB takes over the second best or vice
versa. They have been using an initial seed de�ned as x0 =

n
2k

(of k order) and assuming that
the competition takes place between the best and the second best BBs in a partition, crossover
and mutation do not destroy signi�cant numbers of BBs, boundaries of the random walk are
absorbing 3.

The well-known equation4 [7] was employed to get the quality of a solution as the number
of X partitions converged to the right BBs.

Pbb =
1� (1�pp )n=2

k

1� (1�pp )n
(4)

where Pbb is the quality of a �nal population, the initial population is x0 = n=2k, p is the
probability that the best BB takes over the second best and it should hold p > 1� p. We get p
from the equation (2).

The size of population was de�ned as

n = �2k�1ln(�)
�bb
p
�m0

d
(5)

where n is a population size, � is the term of premature convergence (� � 1, often � = 0:01
or 1=L, where L is the length of a string) and k is a maximum number of independent variables
(it holds L = k:m). This equation (5) shows the relations among the variables and we could
summarize:

� Long BBs (large k) are more diÆcult to solve because longer BBs are scarcer in the initial
population.

� The required population is inversely proportional to the signal-to-noise ratio.

� Longer problems (large m) are more diÆcult because there are more sources of noise than
in short ones.

3 Domains of interest

In the previous section, the population sizing problem has been explained. The last estimation
model is our primary concern. We would like to answer the items below:

� How does the characteristic p = �(d;m0) look in a 3-D graph?

� Show the characteristic Pbb(n) based on variant p and k parameters.

� Compare Pbbtheor and Pbbexper (with and without a mutation operator).

4 Experiments

In Figure 1, the equatation (2) is displayed for d and m0 as parameters in a 3-D graph5.

3This is not completely true while using mutation. That operator could destroy an "already absorbed" indi-
vidual. It may have been one of the reasons why they did not use a mutation operator in their experiments at
all.

4A result from the theory of random walk is that a particle will be captured by the absorbing barrier at x = n.
5Slicing the graph for either d = const or m0 = const, we get desired 2-D characteristics.
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Figure 1: p = �(d;m0)

In Figure 2 (a left image), the equation (4) is shown for various probabilities p, � = 0:25
and k = 1. The probabilities are marked in the graph according to a legend. For example, the
probability 0:501 is stated as p501 and similarly. The right image shares the legend with the left
one. The input values di�er just in k (k = 6).
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Figure 2: Pbb(p; n; k)

Concerning experiments, we used uniform crossover with pc probability, tournament selection
pts, generational replacement scheme, binary data type, the string length L = 100, mutation
with probability pm and the test function|Onemax. The results are average of 10 independent
runs with random intialization and the stopping condition|"too similar" with the value 0:99.

In Table 1, there are theoretical and experimental values of Pbb(n). The values are character-
ized by the vector < dataX; pc; pm; pts >, where the label dataX (X is a number) distinguishes
a curve in Figure 3. Note the only �rst row contains theoretical values and the �rst row is
characterized by the �rst vector and so on in a vector list. So the order matters and the
vectors are < 5; 0:5; 0:0; 0:5 >, < 1; 0:6; 0:0; 0:6 >,< 2; 0:5; 0:0; 0:5 >,< 3; 0:5; 0:01; 0:5 > and
< 4; 0:5; 0:001; 0:5 >.

In Figure 3, there are shown curves, which are based on the data from Table 1. Concerning



n 2 10 20 30 40 50 60 70 80 90 100

Pbb 0.5565 0.7770 0.9155 0.9712 0.9906 0.9969 1.0 1.0 1.0 1.0 1.0

Pbb 0.53 0.63 0.89 0.94 0.97 0.98 0.99 1.0 1.0 1.0 1.0

Pbb 0.53 0.65 0.87 0.93 0.96 0.95 1.0 1.0 1.0 1.0 1.0

Pbb 0.70 0.90 0.94 0.96 0.96 0.97 0.97 0.97 0.98 0.98 0.98

Pbb 0.57 0.76 0.90 0.95 0.99 0.99 0.99 1.0 1.0 1.0 1.0

Table 1: Data Pbb(n) based on the theory and experiments.

the legend, the interpolation of dataX is marked as dataXi.
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Figure 3: Experimental runs of GAs and their interpolations.

4.1 Discussion

As it has been shown in Figure 2, the variable k is an important parameter because a it grows
it quickly disables the ability of a GA to reach a suÆcient proportion of BBs. In those cases,
higher probabilities of p are necessary.

As real runs of GAs and the model of GAs are concerned, they match fairly under one
important condition. It is that zero or very low (pm < 0:001) mutation is used. The estimation
model was designed in a such way that the only disrupting process is a random generation of
individuals in the beginning.

Some new appealing points have appeared as to carry out similar experiments for multi-deme
PGAs and to undertake a better study with more parameters of GAs and with a wider range of
test functions involved.

For the theoretical approximations, we have used Matlab6 6.0 (Release 12) running on IBM
SP2 (spe103 node) with AIX OS (4.3.3). To get a hint of behaviour of real GAs we modi�ed
routines from PGAPack Parallel Algorithm Library (1.0) from the Argonne National Laboratory.
The computing machinery is located at the Supercomputing Center, CTU, Zikova 4, Prague 6.

6The product of Mathworks, Inc. http://www.mathworks.com



5 Conclusion

The population sizing problem of GAs has been explained and the relevant theory of population
sizing was reviewed. The main stress was put on examining the population estimation model
based on one-dimensional random walk. Some compelling questions were raised and carried out
experiments gave appropriate and acceptable answers. Some issues induced from experiments
were discussed.
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