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Carbon nanotubes (CNTs – long tubular carbon nanostructures) belong to the best electron field
emitting materials. A code developed in FEMLAB enables numeric investigations of various aspects
of field enhancement properties of CNTs. It was shown that there exist an optimum distance of
neighboring nanotubes, for which the emitted electron current reaches its maximum, and that the
current is strongly sensitive to the shape of the CNTs tips. To verify the reliability of the 3-D
FEMLAB modeling we computed field emission characteristics of a conductive sphere placed in a
homogeneous electric field and compared them with their theoretical values.
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Introduction

Fowler-Nordheim (FN) theory was introduced in 1928 [1]. The electric field above the emitting
surface enables the electrons tunneling outward. According to the simplest model, the field emission
(FE) electron current density is
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Parameter ϕ  is the work function expressed in eV. For all our computations we assumed 5=ϕ  eV.

Therefore, the so-called Fowler – Nordheim plot   2/log EJ   versus E/1  is linear with a slope of B
(see Fig. 1).
The serious problem in the formula (1) arises in connection with the local field E close to the emitter
tip, as it cannot be measured directly. It is expressed as 

0
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0
E  is the average

macroscopic field ( dUE /
0
= , where U  is the voltage between negative substrate and positive

electrode and d  is their distance) and γ  is the field enhancement factor: This coefficient strongly
depends on the geometry of the CNTs tips and it is difficult to compute it [2,3].

Computations of FE current from the spherical surface

To verify the numerical reliability of our computations, we tested them first on a conductive sphere
placed in a homogeneous field. The field enhancement factor γ  of a sphere can be theoretically
evaluated [4],
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where θ  is the angle between the normal of the surface and the homogeneous field 
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total FE current emitted from the hemisphere of the radius R is
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After some computations one obtains the average current density emitted from the surface
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where the function F is defined as follows:
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Theoretical solutions (5) for various intensities were compared with numerical solutions
obtained in FEMLAB, see Tab.1. As is seen from this table, the computations are in agreement with

theoretical predictions within the relative error of about 20%. The computational errors come mainly
from only two iterations used in the adaptive solver, as three or more iterations would exceed the

memory limitation of 512 MB in our computer. Another source of errors originates from boundary

condition 
0

EE

rr

→  for ∞→r , which is from computational reasons approximated by the condition

0
EE

rr

=  on the boundaries of a large box (in this case of the size 7R) surrounding the sphere.

For FE current emitted from CNTs ellipsoidal tips one can expect an error of the same

order as for the spherical surface.

E0 < jtheor > < jcomp >

1 3.03 3.72

3 38.3 45.8

5 114 136

Field emission properties of CNT films

Carbon nanotubes [5] are long graphitic cylinders, usually of several nanometers in diameter

and of the height of several micrometers. The macroscopic electric field enhanced at their tips

Tab.1  Comparison of theoretical values of FE current  emitted from spherical

surface with values computed by FEMLAB. Geometrical units.



causes cold emission of electrons. These field emission properties of CNTs offer promising

technological applications, i.e. in flat panel displays [6].

By the code developed in FEMLAB various aspects of FE properties of CNTs tips can

be investigated numerically. The basic form of this command – line function is listed in the

Appendix.

Fig. 1 plots current density 2
/ dIj ≡  (I … current per one nanotube,  d … distance

between neighboring nanotubes) versus macroscopic intensity E0. We suppose nanotubes of

the height 50 nm, closed with spherical tips of the radius R = 20 nm and placed at the distances
d = 70 nm each from other. For these geometrical parameters the maximum field enhancement factor

γ  is about 2.5. As the emitted current strongly depends on the electric field, there exists only a narrow

range of intensity suitable to technological applications. For chosen geometry and for the work

function ϕ = 5 eV  the optimum intensity is of the order of 109 V/m.

In computations of the field enhancement factor the screening effect arising from

neighboring nanotubes has to be taken into account. The screening effect is inversely

proportional to the distances of the neighboring nanotubes. For high-density film the emission

from one nanotube is low whereas the density of CNTs emitters is high. On the contrary, for

low-density film the emission from one tip is high and the density of emitters is low. Hence,

there exists an optimum distance of CNTs, for which the electron current density reaches its

maximum. This effect was experimentally established and theoretically explained in [7]. We

investigated this effect numerically. Fig.2 shows the current I emitted from one tip as a

function of the distance d between nanotubes. This figure illustrates that from some distance

the screening of the neighboring nanotubes becomes negligible, the field enhancement factor

reaches its maximum and the current is saturated. Fig. 3 depicts the macroscopic current

Fig. 1  a) Current density versus electric intensity

            b) Fowler – Nordheim plot



density 2
/ dIj =  (current per unit of area) versus the distance. For large distances the current

density drops as 2
/1 d .

Fig. 3  Current density vs. distance;  macroscopic intensity E0 = 5·10
9 V/m.

Fig. 2  Current per one nanotube vs. distance;  macroscopic intensity E0 = 5·10
9 V/m.



As is shown in Fig.4, the FE current is strongly sensitive to the shape of the CNTs tips.

In the computational model we supposed that the nanotube tip is a hemi-ellipsoidal surface[8],

characterized by the ratio k = c/R, where c and R are the axial semiaxis and radius of the

nanotube, respectively. For lower intensities the FE current is more sensitive to the shape of

the emitting area than for larger ones. This phenomenon can be probably explained by the

existence of an effective emission area. For stronger field the emission area is approximately

constant and equal to the whole hemi-ellipsoidal surface. For lower field the emission current

density is significant only at some vicinity of the apex, where the local intensity exceeds some

threshold value. Hence, the increase of the parameter k is accompanied by increase of both the

local field and emitting area and the emission current changes more rapidly.

Fig. 4  Dependence of the current emitted from one nanotube with the ellipsoidal tip on the

ratio  k ≡ c/R, where c is the vertical semiaxis and R is the nanotube radius.



The existence of the transition region for the intensity, related to the emission area

properties, was also clearly established in the model of a sphere, placed in the homogeneous

field. Fig. 5 depicts the dependence of the fraction )(/)( RIrI  on the ratio Rr /  for various

macroscopic intensities E0. Here )(rI  is the FE current emitted from the cross section 2
rπ ,

Rr ≤≤0 ,  and )(RI  is the total current emitted from the whole hemisphere of the radius R.

As is obvious from the figure, the transition intensity for this model is about 10
9
 (arbitrary

units). The distribution of the probe current for lower intensities qualitatively differs from the

distribution for larger intensities.

Fig. 5  Relative current  I(r) / I(R)  emitted from the cross section of radius r from

the spherical surface of radius R



Appendix:
FEMLAB command-line function solving FE current from nanotube tip (simplified model)

% rNT ... radius of nanotube in nm

% kNT ... semiaxis c/R
% vNT ... height of nanotube
% dNT ... distance between nanotubes

% default values
if ~exist('rNT')  rNT  = 20;  end

if ~exist('kNT')  kNT =  1;   end
if ~exist('vNT')  vNT = 50;  end
if ~exist('dNT')  dNT = 70;  end

cc = [rNT kNT vNT dNT];
cc = input(['\nparametries rNT kNT  …

vNT dNT (', …
num2str(cc,'%2g %2g %2g %2g'),') : '],'s');

cc = str2num(cc);
var = {'rNT','kNT','vNT','dNT'};
for i = 1:length(cc)

  eval([var{i} ' = cc(i);']);
end

if dNT < 2*rNT
  fprintf('Neni d > 2r !\n\n');
  break;

end

fprintf('\n\nrNT = %5.2f …
kNT = %4.1f vNT = %5.2f …
dNT = %6.2f\n', rNT,kNT,vNT,dNT);

% height of the geometry

hNT = vNT + 8*kNT*rNT;

% Field emission, F - N theory

% j = a/Fi * E^2 * exp[-b Fi^(3/2) / E]
% a = 1.541434*1e-6 A eV V^(-2)

% b = 6.830890*1e9  eV^(-3/2) V m^(-1)
a = 1.541434e-6;
b = 6.830890e9;

Fi = 5;
aFi = a/Fi;

bFi = b*Fi^(3/2);

% due to the symmetry only 1/4
% of geometry is evaluated
box = block3(dNT/2,dNT/2,hNT);

tube = cylinder3(rNT,vNT,[0 0 0]);
% droplet as rotational ellipsoid

droplet =  …
ellipsoid3(rNT,rNT,kNT*rNT,[0 0 vNT]);

% fem structure
clear fem;

% E0 ... macroscopic intensity
% E0 = 1  => gama = E/E0 = 1

% U0 ... potential of CNTs

fem.variables = {'U0',0,'E0',1};
fem.geom = box - (tube + droplet);
fem.mesh = meshinit(fem);

fem.mesh = meshsmooth(fem);
% 3d electrostatics mode

appl.mode = flpdees3d;
% faces
% lateral sides of the box: 1 2 8 9

% upper and lower side of the box: 7 4
% side of the tube: 6

% sides of the droplet: 3 5
% 1st group:   V  = U0,  type V

% 2nd group: nD = 0,  type nD0
% 3rd group: nD = eps0*E0,  type nD
% side:              1 2 3 4 5 6 7 8 9

appl.bnd.ind  = [2 2 1 3 1 1 1 2 2];
appl.bnd.type = { 'V' 'nD0' 'nD' };

appl.bnd.V   =  { 'U0' {} {} };
% eps0 = 1,  D = E
appl.bnd.nD  =  { {} {} 'E0' };

appl.equ.epsilon = 1;
% charge density

appl.equ.rho = 0;
fem.appl = {appl};
fem = multiphysics(fem);

% adaptive solver, 3 iterations

fem = adaption(fem,'Report','on',…
'Stop','on','NGen',3);
% gama = E

gama  = 'sqrt(Vx.^2+Vy.^2+Vz.^2)';

% (h1,h2) ... scope of images in z-direction
h1 = 0;  h2 = vNT + 4*kNT*rNT;
% gama, vertical plane

figure;
postplot(fem,'SliceData',gama, …

'SliceXSpacing',[eps 15*eps], ...
'SliceMap',jet, 'SliceBar','on','Cont','on', ...

'BdL',[3 5 6], 'Tridata',gama, …
‘TriMap',bone,'TriFaceStyle','interp', ...
'Axis',[0,dNT/2,0,dNT/2 h1 h2], …

'AxisEqual','on','View',[90 0]);
xlabel('x  [nm]');

ylabel('y  [nm]');
zlabel('z  [nm]');
title('Enhancement \gamma = E / E0');

% gama, horizontal plane
figure;

postplot(fem, 'TriData',gama, …
'BdL',[3 5 6],'Cont','on', 'TriMap','jet', …



'TriFaceStyle','interp','TriBar','on', ...
'Axis',[0,dNT/2,0,dNT/2 h1 h2],
'AxisEqual','on','View',[0 90]);
xlabel('x  [nm]');
ylabel('y  [nm]');
zlabel('z  [nm]');
title('Enhancement \gamma = E / E0');

% FE current density
j = 'aFi*E0^2*(Vx.^2+Vy.^2+Vz.^2).*…
 exp(-bFi./(sqrt(Vx.^2+Vy.^2+Vz.^2)*E0))';
% alternatively j = aFi*(E0*ncu).^2.*
% exp(bFi./(ncu*E0))';

for E0 = [1 5]*1e9
% surface current density j
figure;
postplot(fem, 'TriData',j,'BdL',[3 5], …
'Variables',{'aFi',aFi,'bFi',bFi,'E0',E0}, …

'Cont','on','TriMap','jet', …
'TriFaceStyle','interp', 'TriBar','on', ...
'Axis',[0,dNT/2,0,dNT/2 h1 h2], …
'AxisEqual','on','View',[0 90]);
xlabel('x  [nm]');
ylabel('y  [nm]');
zlabel('z  [nm]');
title(['Current Density, …
E0 = ',num2str(E0,'%9.2e')]);

% macroscopic current density jS = I/dNT^2
I = 4*posteint(fem,j,'Bdl',[3 5], …
'Variables',{'aFi',aFi,'bFi',bFi,'E0',E0});
jS  = I/dNT^2;
fprintf(['\nE0 = %9.2e  jS = %9.2e A/m2'], …
E0,jS);
end
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